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PLANE-STRESS ANALYSIS OF AN EDGE-STIFFENED
RECTANGUIAR PIATE SUBJECTED TO LOADS

AND TEMPERATURE GRADIENTS
By Charles Iibove, Dalpat Panchal, and Frank Dunn
SUMMARY

A plane-stress analysis is presented for an isotropic or orthotropic
elastic rectangular plate bounded by four edge stiffeners and subjected to
prescribed temperature distributions and boundary loads. The stiffeners
are assumed to have zero bending stiffness but finite extensional stiff-
ness. They may be either uniform or tapered in such a way as to develop
a constant (or non-constant but prescribed) cross-sectional stress. In
the latter case the required form of taper is determined along with the
stress.

The solution is by means of Fourier series. TIts convergence and
feasibility are tested by means of two numerical examples, one a thermal-
stress problem, the other a "shear-lag" problem.

INTRODUCTION

A plane-stress analysis, by means of Fourier series, is presented for
an elastic rectangular plate bounded by four edge stiffeners and subjected
to prescribed loads and temperature distributions. The plate nay be iso-
tropic or orthotropic, with elastic constants that are independent of
position and, if orthotropic, with axes of elastic symmetry parallel to
the edges. The four edge stiffeners are assumed to have zerc bending stiff-
ness but finite extensional stiffness and to be integrally attached to the
plate along their originally straight centroidal axes. The stiffeners are
either uniform or tapered in such a way as to have constant (or non~constant



but prescribed) cross-sectional stress; in the latter case the required form
of taper of the stiffeners is determined along with the stresses.

More detailed descriptions of the structure follow, along with the
results of the analysis. The symbols used are compiled and defined in
appendix A. The details of the analysis, not required for the understanding
and use of the results, are given in appendixes B and C.

This investigation was conducted at Syracuse University with the
financial assistance of the National Aeronautics and Space Administration,
under research grant NsG-385.

DETATIED DESCRIPTION OF STRUCTURE

Geometry and coordinate system. - The plate and stiffener combination
is shown schematically in figure 1. The plate has a length of a and a
width of b. Any point in the plate is identified by its coordinates x and
y 1in a Cartesian reference frame whose origin is at one corner of the plate
and whose axes coincide with two adjacent edges, as shown in the figure. The
cross~sectional areas of the stiffeners are denoted by Al(y), Ag(y), A5(x),

and Ah(x) for the stiffeners located at x =0, x =a, y = 0, and y = b respec-

tively; however it is to be understood that these functions either are con-
stants or have whatever form is necessary to produce constant (or non-constant
but prescribed) stress in each stiffener.

Ioading. - The assumed loading is also shown in figure 1. It consists of
forces Plioi, Pl(b), etec., applied to the centroids of the end cross sections

of the stiffeners and distributed tensions Nl(y), Ng(y), NB(X), Nu(x) and shear
flows ql(y), qg(y), q5(x), qu(x) applied along the outside edges of the stif-

feners. The distributed tensions and shear flows have dimensions of force per
unit length. The loading as a whole is assumed to constitute an equilibrium
system. Because the stiffeners have negligible bending stiffness, the distri-
buted tensions are transmitted directly through them into the edges of the
plate, however the shear flows are not transmitted unchanged to the edges of
the plate.

Thermal strains. - The temperature distribution and hence the thermal
gtrains are assumed to be known throughout the stiffeners and plate. The
thermal-strain notation is indicated in figure 2 and is as follows: The
thermal strains in the stiffeners are denoted by el(y), eg(y), e5(x), and

eu(x) for the stiffeners whose locations are x=0, x=a, y=0, y=b respectively;
the plate thermal strains are ex(x,y) and ey(x,y) in the x and y-directions

respectively. All of these strains are assumed to be measured relative to
some datum temperature distribution for which the structure is known to be
stress~free. Note that there is no thermal shear strain relative to the x-



and y-axes since these axes are parallel to the directions of elastic sym-
metry.

Stress-strain relations and elastic constants. - Figure 3 indicates the
notation employed for the internal forces in the stiffeners and plate. Pl(y)

Pe(y), Pé(x), PM(X) denote the cross-sectional tensions and el(y), ee(y), GB(X),

eu(x) the total strains (thermal plus elastic) in the stiffeners located at
x=0,x =a, y =0, y =b respectively. The plate stress resultants (force
per unit length) are represented by Nk(x,y) and N&(x,y) for normal stress and

Nky(x,y) for shear stress, as shown in figure 3. The corresponding total
strains are symbolized by eX(X,y), ey(x,y), and 7xy(x,y).

With this notation established, the stress-strain relations for the
stiffeners are assumed to have the form

P,
1 .
e, =e, + AE (1 = 1,2,5,&) (1)

with the Young's moduli E., and E_, independent of y, E3 and EM independent

of x. The plate stress-stTrain relations are taken to“be
€, = ex + Cle - CBNy
=e_+ C.N_ - C.N : 2
v Ty T T2y T T3x @)
Txy~ Cthy

where the compliances Cl’ 02, CB’ and Cu are independent of x and y. If

the plate is homogeneous and isotropic, with thickness h, Young's modulus
E, and Poisson's ratio v, then
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SERIES EXPANSTIONS FOR PRESCRIBED I.OADS AND THERMAT, STRATNS

The results of the present analysis, to be discussed shortly, consist
of formulas for the stiffener and plate stresses in terms of the given load-
ing and thermal-strain distribution. However, the loading and thermal strains
do not appear explicitly in these formulas; it is rather the Fourier coef-
ficients of these quantities that are required. In anticipation of this re-~
quirement, it is assumed that the given distributed loadings can be expressed
in Fourier series of the following form, with known coefficients:

N
o
N, (v) = _Z; B sin (nny/p)

M) = 5 B sin (wo/)
(3)
N5(x) = Z, Bpsin (mix/a)
NH(X) = mgl B'" sin (mmx/a)
ql(Y) = ngo Q) cos (nmny/v)
a,(y) = nlio q; cos (nmy/b)
()
M
QB(X) = 20 Q" cos (mmx /a)

1

qﬂ(x) = m§5 Q" cos (mnx/a)

Similarly, if there are any discontinuities in thermal strain between the
stiffeners and the plate edges, these are assumed to be known in the form
of the following Fourier series:



]

el(y) - ey(O,y) T! sin (nny/b) for O<y<b

N
e2(y) - ey(a,y) = 5 T; sin (nny/b) for O <y <D
(5)
M
63(X) - ex(x,O) = 2 T sin (mx/a) for O <x < a
M 1mie .
eu(x)-_ ex(x’b) = 5 T " sin (mnx/a) for O <x < a

Finally, J% /axg + % /ay2 is assumed to be representable by the
following serles in the open region 0 < x < a, O <y < bs

e a26"}( M § mnx n
+ = 3 & T  sin T°% gin 2L (6)
A2 ayz m=1 mn a b

Finite upper limits M and N are shown for the summation indexes in
equations (3) to (6) in expectation of the fact that it will normally
be necessary to use truncated rather than infinite series for practical
computational reasons.

In the analysis of the constant-area-stiffeners case in appendix B
the Fourier coefficients of the loading and thermal strains will appear in
certain groups. These groups are designated by the letters Ré, R;, Rg' s

R;" for convenience and are defined by equations (B66) and (B67).
The Fourier coefficients appearing in equations (3) to (6) and required

for the evaluation of the R!', RH, RH', R%" can be determined from the usual
definitions. For example,

b
SOEY Y. \
0
Db
2 -3
Q! = _5__n_o_ f ap (¥) cos E%X dy > (7)
0
b
T, =% f [e; () - e,(0,5)] sin =L ay J
0
b a Bze e

mn

- l*_b j f axg + ay:) sin m;‘X sin % dxdy (8)
0



where 8. . is Kronecker's delta. Integration by parts in the last equation
gives tﬁe following alternate formula which permits T to be evaluated

from the first derivatives of ey and ex instead of the second derivatives:
b a &
T =-yi &Xcosmsinmdxd
mn a ab a b J

%%ff ycosmsm%aﬂx (9)
0

Equation (9) may be used for discontinuous e, O e, provided that aey/ax
and de /ay are regarded to be infinite, in the manner of the Dirac delta

functlon, at the loci of points of discontinuity. If e and e are con-
Y

tinuous in the region O < x < a, 0 <y < b, further integration by parts
gives

mn a ab

b
P = - II k3 JF [ey(a,y) cos mx - ey(O,y)] sin E%X dy
0

b a
2
mry & b J[‘ JF e (x37) sin B sin 2 ax ay
Yy a b
0 0

- %g 5% d/\ (e_(x,b) cos nn - e_(x,0)] sin —= dx
0
a b
ni 2 L n myx
T IR
0 0

RESULTS FOR CONSTANT-AREA STIFFENERS

Series for the plate and stiffener stresses.- The analysis in appendix
B gives the plate stress resultants and stiffener forces in the form of
series. Equations (B21) to (B27) give the plate stress resultants Ny, N_,

and Nﬁy’ equations (B17) the stiffener forces. It should be noted that the

series given for N& in the interior of the plate, equation (B21), is not



valid along the edges; separate series, equations (B22) and (B23), are
given Tor evaluating N_ along the edges x = 0 and x = &; along the other
two edges, y = 0 and y= b, Ny is equal to NB(X) and NM(X) respectively.

Analogous remarks apply to N . Similarly the series for the stiffener
forces, equations (B1l7), are’not valid at the ends of the stiffeners;
this imposes no great hardship, however, since the stiffener end forces
are known as part of the given loading.

Evaluation of series coefficients. - In order to use these series for
numerical calculation of stresses, one must first evaluate the coefficients

" 1 n Y 1 " 11 mnn . .
c c c s s s and s appeari in them. The
n’ %n? 8y Bp> Syno 8Bpns Iy Spr Spo m ’ m 2PP ng

first four groups of coefficients, namely cé, c

;, &9 g&, are the key to all

the others, so their evaluation will be discussed first.

The c!, cg, g, and g& are defined by the system of equations (B6l) to

(B64) and can be determined by solving these 2N + 2M equations simultaneously
for the Eé, Eg, gg, gg and noting the definitions in equations (B65). As an
alternative, equations (B70) may be solved simultaneously for the g& and g&;

the ¢! and ¢ are then obtained directly from equations (B68). This alterna-

tive is prefgrable because it requires the solution of only 2M simultaneous
equations, regardless of how large a value is selected for N.

If the structure, loading and thermal strains are symmetrical about the

centerline y = b/2, considerable simplification results. The cﬁ, c;

and are then defined by equations (B78) and the simultaneous system of
M + N + 1 equations (B61') to (B63'). As a preferable alternative to equa-
tions (B61l') to (B63'), the M equations (B70') may be solved simultaneously

"

for the g&, after which the & cg, and c; are obtained directly from equa-

tions (B78) and (B68). In this alternative the size of N again does not
influence the number of equations that have to be solved simultaneously.

'
» gm:

n

If both y = b/2 and x = a/2 are axes of symmetry of the structure,
loading, and thermal strains, then equations (B79), (B61"), (B63") may

be used to obtain the cl, c’, g!, g&, where (B61") and (B63") represent

M+ N + 2)/2 simultaneous equations. The quantities may also be deter-
mined from fewer (namely (M + 1)/2) simultaneous equations by using the

system (B70") to solve for the g' and then obtaining the remaining coef-
ficients directly from equations (BT9) and (B61").

With the c!, ¢, g, g’ known, equations (B59), (B6O), (B58), and
(B56) will furnish the remaining coefficients directly.

Limiting case: large stiffener areas. - If the stiffener cross-
sectional areas are assumed to approach infinity while maintaining constant




*
ratios with each other , the solution takes on a much simplified form
characterized by the fact that it is no longer necessary to solve simul-
taneous equations. The guantities cé, cg, g&, and g; are defined by

equations (B80) directly on this limiting case.

In equations (B80) the coefficients of Rh/(A El) etc.,are in error
by terms of the order of (asEllAlEl)‘l. A more &ccurate solution, in
which these coefficients are correct to terms of the order of (asEllAlEl)-l,
is represented by equations (B81l) to (B8B4). This more accurate solution
still retains some of the simplicity of equations (BBO), in the sense that
it too does not require the solution of simultaneous equations.

Numerical examples. - The foregoing results were used to obtain
numerical stress data for two illustrative problems, one a thermal-stress
problem involving non-uniform temperature distribution without any applied
loads, the second a "shear-lag" problem involving the diffusion of loads
from the stiffener ends into the plate. The two problems are shown

schematically in figure k.

In both problems the plate is square (b = a) and isotropic, with
Young's modulus E, Poisson's ratio v, and thickness h. The four stif-
feners are assumed to be identical and to have the same Young's modulus
as the plate. The symbol A will designate the common values of Al’ A2,

A5’ and Ah'

In the thermal stress problem (figure 4(a)), the stiffeners are
at a uniform temperature, say zero, while the plate has a "pillow-shaped"
temperature distribution of the form g sin (mx/a) sin (my/a); thus 6
denotes the temperature rise of the plate center relative to the edges.
The symbol o will denote the coefficient of thermal expansion of the

materials.,

In the shear-lag problem (Figure L4(b)), the temperature is uniform
and the loading consists of identical tension loads of magnitude P applied
to the end cross sections of the stiffeners.

In these problems the structure, loading, and thermal strains are
symmetrical about both centerlines, namely x and y .= a/2; Hence equations
(B70") may be used for their analysis. In these equations Rﬁ and Rﬁ'

take the following forms, according to equations (B66) and (B67),for
the thermal-stress problem:

% - - . :
More precisely, if the dimensionless quantities (asEllAiEi)'l, with

i=1,2, 3, 4, are assumed to approach zero while maintaining constant
ratios.



R' = = 3. K R"" = - 2 K
n m

m=1 "“mn n=1l mn

where
= 2 2
K = mnr Tmn/(a Emn)
= 2 242 U 4

E = (m® + n®) "« /(a En)

7 = -209n2/a® when m=n =1

S

O otherwise

Thus

R' = Ehog /2 forn =1

n

0 for n # 1
(11)
R'" = Eha o /2 form =1
m
0] for m # 1
For the shear-lag problem, on the other hand,
v — ey
R = R' LP/a (12)

for all (odd) n and m.

The results of the calculations are shown in the figures, starting
with figure 5, through dimensionless plots of the plate stress resultants
Nk, Ny’ and ny as Tunctions of x for fixed values of y, and the stiffener

force P%(&). (In view of the symmetry which exists about the plate diag-

onals in these examples, as well as about the plate centerlines, the graphs
of P2(y), 3l(y), and Ph(x) are all identical with the graph for Pa(x).)

The results shown are based on calculations with M = N =39 . As a check

on the convergence, the calculations were repeated with M =39, N =179;

the results agreed with the previous ones to the extent that any differences
would be indiscernible on the graphs shown. The dotted curves in some of

the figures represent approximate solutions obtained by using equations (B80) and
(B81) to (B84), which apply when the stiffener cross-sectional areas are



large compared to the plate cross-sectional area. It is seen that the
large-stiffener approximation is quite good for the plate stresses when
the area-ratio parameter hah/(ﬂ?A) is O.1 or smaller; it is of course
exact when Lah/(x®a) = 0.

The thermal-stress results indicate finite shear stress in the corner
of the plate for all values of the.parameter Mah/(n?A). However, the shear-
lag problem exhibits infinite corner shear stress for the same values of the
parameter hah/(n?A). In an actual structure, finite stiffener bending stiff-
ness (in particular, rigid connections where the stiffeners meet at the corners)
would lead to zero sheay stress at the corner and therefore, in a neighborhood
near the corner, to shear stresses which might be considerably different from
those which the present analysis predicts.

Accepting the premise of zero bending stiffness of the stiffeners or
hinged connections where the stiffeners meet, it is interesting to note that
in the thermal-stress problem the maximum value of Nky in the plate does

not always occur at the corner (see, for example, figure 5c).

The case hah/(nZA) = O represents the limiting case in which the sheet
is infinitely thin by comparison with the stiffener cross-sectional dimen-
sions. In this case the end loads applied to the stiffeners in the shear-
lag problem should be transmitted unchanged throughout the lengths of the
stiffeners. Thus in figure 6(a) the value of PB(X)/P should be 1.0 for all

x/a, and NXA/(hP) should similarly be 1.0 for all x/a along the line y/a:0.0.

The deviations from 1.0 shown in figure 6(a) are due to incomplete convergence
associated with the use of finite values of M and N.

The calculations were performed on the IBM TOT70 computer at the
Syracuse University Computing Center and required a total of 50.5 minutes
for all the results shown. The simultaneous equations (B70") were solved
by the iterative procedure of reference 2. The plate stresses were com-
puted at x/a and y/a intervals of 0.1l in order to plot the curves shown.

RESULTS FOR CONSTANT-STRESS
(OR PRESCRIBED STRESS) STIFFENERS

For efficient design, it may be desired to taper the stiffeners so
as to achieve constant cross-sectional stress along the length of each one.
In appendix C a generalization of this condition is considered in which it
is assumed that the tapers are such as to produce prescribed, but not
necessarily constant, cross-sectional stress variations along the lengths
of the stiffeners. The symbols cl(y), cg(y), GB(X) and oh(x) represent

the prescribed stresses (positive for tension) in the stiffeners located
at x =0, x =a, y =0, and y = b respectively.

In this case it turns out once again to be unnecessary to solve
similtaneous equations in order to compute the plate stresses. Equations

10



(83%), (B34), (B36), and (B37), used in conjunction with equations (C2),
give the c’, cg, gy, and g; directly; equations (B60), (B58), and (B56)

then furnish the j_ , and equations (B21), (B24), and (B27) the plate
stresses.

The lengthwise variations of stiffener cross-sectional area needed to
produce the prescribed stiffener stresses can be determined from equations
(C3) in conjunction with (Ck) to (CT7).

CONCTUDING REMARKS

A plane-stress analysis, based on Fourier series, has been presented
for the stresses in a linearly elastic isotropic or orthotropic rectangular
plate bounded by four edge stiffeners and subjected to prescribed tempera-
ture distributions and boundary loadings. The stiffeners are assumed to
be either uniform or tapered in such a way as to develop constant (or non-
constant but prescribed) stresses. The convergence and feasibility of the
analysis have been tested and found to be satisfactory in two numerical
examples for the case of uniform stiffeners.

The present analysis differs from previous thermal-stress analyses
of rectangular plates by the incorporation of edge stiffeners. It differs
from previous "shear-lag" analyses by the avoidance of extreme assumptions
regarding the plate stiffness or plate normal stresses in what is usually
called the transverse direction.

However the present analysis is also characterized by the assumption
of zero bending stiffness for the stiffeners and the absence of boundary
conditions on displacement. The removal of these two limitations would,
it is felt, be a worthwhile objective of further research. Regarding the
first limitation in particular, the inclusion of finite stiffener bending
stiffness and joint rigidity where the stiffeners meet appears to be
necessary in order to obtain realistic estimates of shear stress in the
neighborhoods of the corners.

11



Remarks:

APPENDIX A

SYMBOILS

(i) The subscript 1,2,3 or 4 on a symbol for a stiffener-

related quantity identifies the stlffener location as x = 0, x =a, y = 0,
or y =b respectively. (ii) The Fourier coefficients of Kknown gquantities
(loads, thermal strains), and combinations of such coefficients, are gener-
ally represented by capital letters, while the Fourier coefficients of
initially unknown quantities (e. g., internal stresses) are denoted by small

letters.

a',a",a'",a ""
n’ n’ m’ " m

plate dimension in x direction; see figure 1

Fourier coefficients in series expansion for the stress
function F(x,y); see equation (B16)

Fourier coefficients in series expansions for F(0,y), F(a,y)
F(x,0), P(x,b) respectively; see equations (B1lk4)

Al(y),A2(y),A3(x),Au(x) stiffener cross-sectional areas

A

B' |l B”' B”"
n’ m

]
mn

c' c"
n’ n

l
c!, c"
n’ n

CpsC5,Cy,

12

common value of the above when all four stiffeners are
identical and uniform

plate dimension in y direction; see figure 1

Fourier coefficients in series expansions for Nl’ oY
B’Nh respectively; see equations (3) and (7)

Fourier coefficients in series expansion for N (x,y),
see equation (B21)

Fourier coefficients in series expansions for N (0,y)
and N (a,y) respectively; see equation (B22) Y

c' C nn/b, c C nn/o
plate compliances defined by equations (2)

Fourier coefficients in series expansion for BAF/axu;
see equation (B28)



ey (¥)5 ey(¥), e5(x), e (x)

ex(x)Y) s ey(x:Y)

E
mn

Ell

E,, E

2’ EB’ EL'_

Stiffener thermal strains; see
figure 2

plate thermal strains; see figure 2
C2(mﬁ/a)u+(0h-2c5)(mn/a)g(nﬂ/b)2+Cl(nﬂ/b)u
value of above with m =1 and n =1
Young's moduli of stiffeners

Young's modulus for stiffeners and isotropic
plate when all have the same Young's modulus

stress function for plate; see equation (BU4)

Fourier coefficients in series expansion
for Nx(x,y); see equation (B24)

Fourier coefficients in series expansions
for Nx(x,O) and Nx(x,b) respectively; see

equations (B25) and (B26)

1 "
g C mr/a g, C mn/a
thickness when plate is isotropic
1,2,3, or L

Fourier coefficients in series expansion

auF/ayu ; see equation (B29)

Fourier coefficients in series expansion
for ny; see equation (B27); see equation

(B58) for value of 3oo

combinations of known Fourier coefficients,
defined by equation (B6T)

known quantity defined by equation (B72)
sumation indexes (integers)

upper limit on m, p, and g

summation index (integer)

upper limit on n

13



Nl(}’): Ng(Y): N3(x): Nh_(x)

Nes Ny N

1Y
Pl(Y)} PE(Y); P5(X): Pu(x)

P, (0),P, (b), P,(0), P2<b),>
P,(0); B5(a), B,(0), B, ()

P

q

4 )5 4,()5 a5(x); q,(x)
Gy g

N 1" 11t e
Ry Ry BY'' 5 Ry

N " 1%} nn
s', 8", s s
n’ "n? "m ? "m

v " " 1
tn, tn, tm B tm

[} 1" (131 mn
T, To, TN, TV

1k

external running tensions, force per
unit length; see figure 1

plate stress-resultants, force per
unit length; see figure 3

summation index (integer)

stiffener cross-sectional tensions;
see figure 3

stiffener end loads; see figure 1

common value of the above when all are
equal; used in numerical example

summation index (integer)
external shear-flow loadings; see figure 1

Fourier coefficients in series expansions
for respectively; see
4y, Qo q5) 9, b Ly;

equations (4) and (7)

combinations of known Fourier coefficients,
defined by equations (B66) and (B67)

Fourier coefficients in series expansions
for the stiffener cross-sectional tensions;
see equations (B17)

Fourier coefficients in series expansions
for the derivatives of the stiffener cross-
sectional tensions; see equations (B20)

and (B42)

Fourier coefficients in series expansion
for Beey/axz + Beex/ayg ; see equation (6),
also equations (8), (9), and (10)

Fourier coefficients in series expansions

for thermal~strain discontinuities between
stiffeners and plate edges; see equations

(5) and (7)

x and y components of displacements in plate



1 1"
Ume’ Unnay
v
Vanp
w! W
MNmp’ ~MNmp
XY
xl
] n 11t "
XMn’ XMn’ m’ m
Y
v,y
' 1"
Mn’ Tm
[0
anO’ 6m.O’ 6mp
o)
mpq
A
n

GX(X,Y): ey(XJY): 7xy(X:Y)
el(Y): GE(Y): G_D,(X), eh(x)

8

v

a1 (7)s a5(¥)s o5(x), 0y (x)

A

known quantities defined by equations (B71)
plate displacement component in y-direction

known quantity defined by equations (BT76)
and (BT7)

known quantities defined by equations (BT5)
Cartesian coordinates; see figure 1

dummy variable representing x

known quantities defined by equations (BT3)
Cartesian coordinate; see figure 1

dummy variables representing y

known quantities defined by equations (BT7A4)
known quantities defined by equations (B73")

coefficient of thermal expansion of plate
and stiffeners in numerical example

Kronecker's delta; unity when both subscripts
are equal, zero otherwise

1 for m, p both even and g odd;

1l for m, p both odd and q even;

zero otherwise

known quantity defined by equation (B69)
plate total strains

stiffener total strains

temperature rise of plate center relative
to the edges, used in numerical example

Poisson's ratio when plate is isotropic

prescribed stiffener stresses, positive
for tension

hah/(neA); area-ratio parameter used in
presenting the results of the numerical
examples.
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APPENDIX B
ANALYSIS FOR THE CASE OF CONSTANT-AREA STIFFENERS
Basic equations. - With u(x,y) and v(x,y) denoting the x- and

y-components of infinitesimal displacement, the strain-displacement
relations for the plate are

ex='?§ ey=% 7xy=%+gxl (B1)

Equations (Bl) imply the following compatibility condition on the strains

2 2 =2
Try T Ty (82)
T Ny

The plate equilibrium equations, namely

o

N o) N
&E+—&x—,l=o 837l+1’)§-‘£=o (B3)

imply the existence of a stress function F(x,y) such that

N = O%F/ y= Ny = 0%F/x2 ny = - O°F/Xxdy (BL4)

-

Eliminating the strains in equation (B2) by use of equations (2), and
then the stresses by use of equations (B4) leads to the following form
of the compatibility condition, in which account is already taken of the
equilibrium and stress-strain relations:

N
O'F F y X _
C, gﬁ + (cl+ - 2c5) -—ax2.ay2 +Cy 5;5 + >y + 2 =0 (B5)

Considering now infinitesimal lengths of the stiffeners as free bodies,
and utilizing the third of equations (BLt) to express Nky at the plate edges

in terms of F, one obtains the following equilibrium equations governing
the longitudinal variations of the stiffener cross-sectional tensions:



P, /dy - (O°F/xdy), 5 - q,(y) =0
dP,/dy + (O7F/axdy), _ + ay(y) = 0O
(B6)
dPB/dx - (82F/8x8y)y=0 - qj(x) =0
dPh/dx + (BEF/Bxay)y=b + qu(x) =0

Integral attachment between the stiffeners and the plate edges implies
equality of their longitudinal strains and leads to the following

additional set of conditions on Pl’ P2, PB, and Ph:

P (r)/ (A1) + e (y) = e (0,5) = (e, + CN - CoN),

B, (r)/(a8,) +ey(y) = e (a,5) = (e, + C N - CoN,)

3 x'x=a

P3(x)/(A3E3) + ej(x) = ex(x,O) = (ex + C N C3Ny)y=o

Ph(x)/(AhEh) + eh(x) ex(x,b) (ex + CN_ - C,N )

X >y'y=b

in which equations (2) have been used to obtain the right-hand terms.

The assumption of negligible bendlng stiffness for the stiffeners permits
the substitutions (N ) (y), etc. to be made in these terms. Express-
ing the remaining stress resuitants in terms of ¥, one obtains

2 + [e (y) - e (0,7 - ¢, (X + 0N (y) =0
A By 1Y yoy 2 "2 x=0
P, (y) ‘
g [l - o @) - o (i{) PO =0
) (B7)

P_(x

3 OFF

[e, (x) - ,0)] - ¢, (—=) + C_N_(x) =0

A3 E3 + 63( eX(X 1 (ayz y_o 5 3(X
PG 2r
et [e,(x) = e (x,b)] - C, (---)y=b + O, (x) = 0
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The problem can now be stated essentially as follows: +to solve
equations (B5), (B6), and (B7) for F, P., By, P5, and P, subject to

boundary conditions arising from the prescribed forces at the stiffener
ends and the prescribed distributed loadings Nl’ N2, N5’ and NL. In

the following sections a formal solution to this problem will be obtained
in terms of Fourier series.

Boundary values of F. - The fact that the distributed loadings N

, and N are transmitted directly to the plate means that the second
derlvétlve of F in the direction of the edge is known. Therefore two inte-
grations will give the variation of F along each edge in terms of the unknown
corner values and the known Nl’ N2, N5, Nh' For example (using subscripts on

F now for convenience to denote partial differentiation),

F (0y) =N ()
Therefore
J
5 0) =500+ [ by
0
Therefore v oy
RO0,y) = 70,0 + 5,000 + [ [ mGMay'ay (38)
0 0

Substitution of ¥ = b in equation (B8) gives

b y!
1
F (0,0) = 3 [¥(0,b) - ¥(0,0) ff N, (v")ay"ay "]
) 0 ©
which result, substituted back into equation (BB), gives

b yy'
7(0,5) = ¥(0,0) + £ [7(0,0) - ¥(0,0) - [ [ mMayar1ef [y vy
0 O 00
(9)

Thus the variation of F along the edge x = O has been determined to within
two constants, F(0,0) and F(0,b). Replacing Nl(y") by its series expansion,

equation (%), and carrying out the integrations indicated in equation (B9)
give

P(0,5) = 7(0,0) + L [#(0,b) - 7(0,0)] - 2 B () e B¥  (510)
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going through a similar procedure for each of the remaining edges, one
obtains

N 2
F(a,y) = F(a,0) + L [F(a,b) - F(a,0)] - £ B () sin 2 (811)
—_ X 3 ) : o M "e a )2 .o mMnx
F(x,0) = F(0,0) + 2 [¥(a,0)- - F(0,0)]-- 2 B (=) sin == (B12)
. X ) b M nn a2 . mmx
F(x,b) = r(0,b) + S [F(a,b) - F(0,b)] - w21 B E) sin == (B13)

For later use it will be necessary to have Fourier expansions of the
boundary values of F in the form

N
F(O,y) = % a' sin (nmy/b)

N
- 1" .
Fa,y) = L2y 8, sin (nmy /o)
M (B1k)
— e :
F(x,0) = 21 an' sin (mrx/a)
F(x,b) = % a'"" sin (mnx/a)
’ m=1l m
Evaluating the coefficients in these series through the formulas
b
al = (2/b)u/\ F(0,y) sin (any/b)dy, etc., with F(0,y), etc. replaced
0 .
by the right-hand sides of equations (B1lO) to (B13), one obtains
2 n b 2
[ - - - ey 1
al = 7= [F(0,0) - (-1)" F(0,b)] - (=) B!
a! = 2 [%(a,0) - (-1® Fla,p)] - (27 &
n  nx ? ? nx n
(B15)
art = 2 [5(0,0) - (-1)™ F(a,0)] - (2)° B
m mit ’ 4 mr m
a' = 2 (5(0,b) - (-1" F(a,p)] - (2" By
m ms ’ 4 mxt
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Series assumptions for F(x,y) and P, P, P5, B,. - In the interior

of the plate (i.e. in the region 0 < x < a, O < y < b, excluding the edges
x =0, aand y =0, b), the stress function F(x,y) will be assumed to be
representable by the double Fourier series

Plx,y) = mgl ngl a_ sin (mnx/a) sin (nmny/b) (B16)

with as yet unknown coefficients. Equation (B16) is, of course, not valid
at the edges; however there the values of F are already expressed in series
form by equations (Bil4) and (B15). Similarly the stiffener forces will be
assumed in the form

N
— v -
Pl(y) = % s8] sin (nwy/b)
P.(y) = % s" sin (nny/b)
2\ n1 °n
M (B17)
= T o3
PB(X) 21 Sy sin (mx /a)
M 1 0
- s"" sin (mnx/a)
PM(X) nfl &
for all cross sections except the end cross sections. At the end cross
sections the stiffener forces are already known from the given loading
(see fig. 1).
The coefficients in the series in equations (B16) and (BL7) are
related to the left~hand sides through the usual formulas
a b
b . omnX .  nny
a == u/‘ u/\ F(x,y) sin — sin = dydx (B18)
0O ©
b
s' = % u/\ Pl(y) sin E%X dy , etc. (B19)

0

Series for the derivatives of F(x,y) and P, P, P5’ P,. - The

derivatives appearing in equations (BL) to {B7) will also be assumed
expressible in series as follows



N
¥

()= (FF/33)_o = | E el sin (nny/b) (0
2 2 L
(Ny)x=a= (02p/ Xx )x=a = %, ¢ sin (nmy /o) (o
M N 0
N, = 3PF/y2 = w2 po &y Sin (mnx/a) sin (nny/b) (O
(). = (%F/y®) _ = % g sin (mrx/a) (©
x’y=0 y=0 m=1 &
(v, o= (FF/%®) L = B & sin (woe/a) (
xyb = L g sin (mx/a
_ny - ¥F/xYy = mlgo n1>—\'1'0 Iy, cos (mnx/a) cos (nny/b)
BhF/BxLL = mlgll ng:l e, sin (mnx/a) sin (nny/v)
auF/ayu = msz'l ngl i, sin (mnx/a) sin (nxy/b)
BLFF/BxeByZ = mg'l ngl p_, sin (mrx/a) sin (nny/b) o

dPl/dy
dPe/dy
P,/dx
a 5/

dPu/dx

M
= FF/x® =z,

N

= 5 tr'1 cos (nmy/b) (O<yxd
N "

= I, t, cos (nmy /o) (0O<y<o
M

= 2 tI'r;' cos (mmx/a) O<x<a
M 1m1

= mg'O tm cos (mmx/a) (O<x<ga

N
c._ sin (mnx/a) sin (nny/b)
ng‘l mr ™ (O

)

)

)

)

O<«<cx<a
<y < b

<y <b)

<y <hb)
< X <L a
<y<b

<x<a)

IA
]
IN
o

:

In
<
IA

o’

o)

O<y<b)

< X <L a
<y <Db

i
e
:

e’

(B20)

(B21)

(B22)

(B23)

(B2k)

(B25)

(B26)

(B27)

(B28)

(B29)

(B30)
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wvhere
b

o}
t) = no f (dPl/dy) cos (nmy/b) dy , etc.
0

mr

a
c = % f (%F/Xx2) sin (mmx/a) sin (nxy/b) dydx
0

b
f (BeF/axg)Xzo sin (nwy/v) dy

O‘Ir\)

01m

f (3F/23)___ sin (ny/b) dy
0

ab
g = 3 f (0°F/y2) sin (mmx/a) sin (nny/v) dydx
0

mn  ab

mlm

f (%5/33)_, sin (wrx/a) ax
0

©

g =2 f (3F/y®), , sin (mmx/a) ax
0

C.
]

e = ;)% f (auF/axu) sin (mmx/a) sin (nmy/b) dydx
00

’_l
!
o=|~°‘

f BLLF/ay ) sin (mnx/a) sin (nmy/b) dydx
00
ab

0]

p_ = EL{—) f (ahF/axgayg) sin (mmx/a) sin (any/b) dydx
0

(B31)

(B32)

(B33)

(B34)

(B35)

(B36)

(B37)

(2-8 )( -5
mo o) f f (32F/ 33y ) cos (mrx/a )eos (nny/b)dydx  (B38)

(B%9)

(BLO)

(B41)

The coefficients appearing in the series for the derivatiwves (equa-
tions (B20) to (B%0)) are, of course, not independent of the coefficients



in the series for the basic quantities (equations (B16) and (Bl7)). The
former can be expressed in terms of the latter by means of integrations
by parts in the right-hand sides of equations (B31) to (B4t1)*. For
example, from equations (B31)

2 - 8no nx ; n
y __ "m0 _ nxn . nmy
t) = = [Pl(b) cos nx Pl(O) + 3 h/ﬁ Pl(y) sin = dy]
0
.m0 . ox
= — [Pl(b) cos nr Pl(O)] + 3 s)
2 - 5nO . nx
tg =—3— [Pe(b) cos nx - P2(O)] i~ sﬁ ' (B42)
eo_ __:__Eg - mr en
Lt = = [PB(a) cos mxn P3(O)] + 5 s
2 - Smo -
o _ : - ma _un
b= — [Ph(a) cos miu Pu(o)] + 5 S

Similarly two partial integrations with respect to x in equation (B32)
give

_mn 2 1 m g mrty 2
°n=a & la,- (1) a] - (3 m (B43)
Two with respect to y in equation (B35) give
— ﬂ g e _ - n AL - M 2

In equation (B38) partial integration with respect to x, followed by
partial integration with respect to y in both of the resulting terms, gives

(28, 0)(2-80)
mn = ab

3 [ -1)™ Fa,b)-(-1)" F(a,0)-(-1)" F(0,b) + F(0,0)]

+ m 2“81’].0 [( l)n nn nl] + on 2-8mo [(-l)m a" - a'] + ox oz a (B)-‘-5)
a Db - ®n " %m b a n n a b “mn

. _ ,
Such a technique was employed for plate bending problems by A. E. Green
(reference 1), who ascribes its earlier use to S. Goldstein.
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in which single-valuedness of F at the corners has been assumed. Proceed-
ing in a similar fashion with the right-hand sides of equations (B39) to

(B41), one obtains

SEE2 o L ()R] - () 2 [ar - ()R] . (B46)

mn a a n n a a mn
b
i = B ley - (D7) - GO Flay - (DT F) ey, (B0)
p = o ZEET ()™ p(a,n) - (21" B(a,0) ~ (-1)® F(0,b) + F(0,0)]
2 2 a"Mog 2y 2 mr nwx
+5 & [(-1)" o+ S5 -;[(-l) a. a]+( )( ) a
(B48)

Substitution of series into the basic equations. -~ Through equations
(B42) to (B48) all the unknown coefficients in the derivative series are
expressed in terms of the basic unknowns a cé, c;, g&, g&; sé, sg, sé” s
s"'; F¥(a,b), F(a,0), F(0,b), and F(0,0). Relationships among these unknowns
will now be obtained by substituting the assumed series into the basic equa-

tions (B5), (B6), and (B7).

Considering first equation (B5), substituting into it the series
expansions from equations (6) and (B28) to (B%0), and eliminating e v i

and p_ through equations (B46) to (B48), one obtains

ey &2 1e; 0Py - @) 2ar L ()R] (D 5 o
+ (¢, - 20,) S I 0) ™ (g, 1)~ (-1)"F(a,0)-(-1)" F(0,5) + F(0,0)]

+ £ (%’1)2 (-1 e - a4 = (n“) L (-1)™ a-ar 1+(E5) (n“) mn}
+ 0, {%% gl - (-1)" g - (55 ’ Erart - (<)% a™ + (B2 ) amn} N

Solving this equation for a  and eliminating a’, a; aﬁ’, and a"" through

equations (B15), one obtains
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a_ = [(-1)™7 P(a,b) - (-1)" F(a,0) - (-1)" F(0,b) + F(0,0)]
mn 1
) _l_{T P2 or L (L) ot o+ 288 [gr L (1) g"] C
Emn mn a a n n 2 b b m m 1
+§%" (——) [B' - (-1)" B'] (?)2 C, + (%’1 c (c, - 205)]
P2E ) e i ED e ¢ @), - 2001}
(B49)
where )
L
E_=Cy, (F7) + (g, -2 5) ) (“’t +c, (3 (B50)

Thus through the compatibility equation the unknown amn have been expressed
in terms of a smaller class of unknowns, namely the cé, c;, g& and g&.
Turning now to the stiffener equilibrium equations (B6), substituting

the series from equations (B20), (B27), and (4), and utilizing equations
(B42), one obtains the relationships

27 M0 () e (b) - B (0)] + X st @ - B 5 -0 (a0 )
Tt 1 B 0)] + b %n " % T no dm T 0 (n=0,1,...,
(B51)
- M
O [(-1)" P, () - By(0)] + r{)—“ sy + Q)+ T jmn(-l)m= 0 (0=0,1,0..,N)
(B52)
- N
O [ (-1)™ P5(a) - PB(O)] + “;—“ sIM- Q= 4 g = O (m=0,1,...,M)
(B53)
- SmO ( l)m P ( ) P mit  yn [ThT) N . ( l)n =0 ( =0,1 M)
_a——[- ll-a - )—L(O)]-*-;—sm-*_Q +n§OJmn_ = Mm=0,1y000

(B5k)

The n = 0 and m = O equations of this group will be studied first. From
equation (B4S5), in conjunction with (B1l5) and (B49), it is noted that
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5; [F(0,0) - F(a,0) - F(0,b) + F(a,b)] (B55)

oo =
. 1 b "
Jop = 3 H(B;I-Bn) for n;éo_
(B56)
So =% (B -B") for mfo
Therefore equations (B51) and (B52) for n = 0, (B53) and (B54) for
m =0 give
M 11
P, (b) - Pl(O) - DQ} - biyy * mgl(a/mn) (Bm" -BM") =0 (B57a)
5 1" . M 1 m
P, () - B,{0} + Q] + bjyy - 2 (a/m)(B'" - BU)(-1)" = 0 (B5TD)
N
PB(a) - PB(O) - aQ" - ajy, * L (b/nn)(Bg - Br'l) =0 (B57¢c)
i N 11 n
Pu(a) - Pu(o) +aq)" +ajy, - 5 (b/nx) (13n - BI;)(-l) =0 (B574)

Three of equations (B57) are redundant if the applied loading constitutes

an equilibrium system for the structure as a whole: It is easily verified
that the equation of equilibrium of forces in the x-direction is the same

as that obtained by adding equations (c) and (d), the equation of equilibrium
for the y-direction the same as the sum of equations (a) and (b), and the
equation of equilibrium of moments about the center of the plate equivalent to
(a/2)[eq.(a) - eq.(b)] + (b/2)[eq.(d)-eq.(c]], Hence any three of equations
(B57) may be eliminated from further consideration. The one remaining equa-
tion serves to establish the value of jOO' Selecting equation (a) as this
remaining one gives

M
Joo = = % +%{Pl(b) - P (0) + 5 o (B - BIL")} (858)

Three alternate expressions for j.. can be obtained from equations (b),
(c), and (d). For the sake of symmetry one can sum all four expressions
for j and divide by four in order to obtain still another formula for

5 while esthetically more satisfying, this formula is more complicated

Jans
£8Sn equation (B58).

Finally, equations (B?), with the various terms replaced by their
series expansions from equations (3), (5), (B22), (B23), (B25), and (B26),

give
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r t t | -
sn/ (AlEl) + T} - Cyef + CBBn 0
" " " no_
sn/ (A2E2) + T - Chen + CBBn =0
(B59)

" (11 S [ 21 -
sm/(A )+T Cigy + C5Bl 0

1 " 1" o

m /(AhEh) T Ci8y * CBBm =0

In obtaining equations (B59), the assumption of uniform stiffeners was used
for the first time.

Reduction in the number of simultaneous equations. - Egquations (B51)

to (B54), with the n = O and m = O equations excluded, can be used to obtain

a system of simultaneous equations in which the Cn’ cn, gm and gm are the

only unknowns. This is accomplished by eliminating sé, s;, s;', and s;f with

the aid of equations (359), and jmn by means of the following expression

I fer - (-1)™ ) oy + 25E (8! - (-1)7glC }

WII\)

dm = - ab E {jmn
mfo
(n;éo
3 3
ce B - 0P o+ 2 G TR Ie ) (60

which is obtained from equations (B45), (B15), and (BL9). The resulting
system of simultaneous equations is

m
) [A g 21 gmﬁZa) ] - [a mgl (mr ami -1 ]

n E
- n —n

2 a2 M & - (-l) gm —

= R;l "5 (b_ mél Emn (n—l,2,...,N) (B6l)
- C mnga)z( l) ] + C" [A 2 1\% @[ﬂi]
n a m— a m=1 Emn
2 M -é-' - (_l)n ~u
=R+ 2@ 2 ()R (n=1,2,...,N)

T (B62)
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- N _ N 2 (_.4\2
R R

b n=1 'mn
m
1
2 2 N - (-1)
e ETE I e 09
m

b n=1 Emn

— N n . .
-8 £ 5 (nar/b%;(-l) 1+ (a5, +2 3 (nr/b)2,
N - ()" e
n=l (_l)n = 7
mn

(m=1,2,...,M)

= R"" + g_ (m_Tf
m a a

(B6Y)

ey =i /o, Tho=clCc, nn/b , g = glC) mi/a , g = gC, mi/a (B65)

and Ré, R;, RA", R&" are the following combinations of known thermal and

loading quantities:

M

R =@+ %{Pl(o)-(-l)n P (b)] + EEE (B-B!) + AE, %E(C5B£+T£) - = K
Ry =-q) + 5P,(0)-(-1)" By(0)] - 2o (31-3)) + AE, T 3Bty * Z (1%,

(B66)

N
RUT = QI+ §[P5(o)-(-1)m Py (a)] + oo (BI'-BI")+ AR, TR(CBIM 4TI~ B K
Ry = =Qt S[Pu(o)-(-l)mPu(a)] - bmﬁ(BI;;' B )+A)E) mn(c B""+T"") + Zl( -1)°K mn
and
K = B T - 2 @, (0P - 2@ 0 g (01} )

mn E “ab mn
mn

Equations (B61) to (B65) can be solved simultaneously for the cl, c;,
g', and g". With these known, equations (B59) will furnish the values of

5!y s, sg', s"", and equations (B60), (B58), and (B56) the values of the



J e Bquations (B17) will then give the stiffener stresses, equations (B21)
to (B27) the plate stresses.

Further reduction in the number of simultaneous equations. - Equations
(B61) and (B62), written for the same value of n, can be solved for each M
and E; in terms of all the E;n and éx'r,l’ with the result

{[AE +— M][R'-%(%Tgl\é

- ()" g
m=1 En ]

ml B

2, L\m 2 - (-1)"
2 Y Gow/a) (Mg, 2 an® B e 1}

mn
(B68)
Bl-(-1)" g"
{[A E 4+ 2 21 M][R" ‘2 (n:rzml‘fl( ])mm_mn_m]
gmn(a) g-l) . ns }Zd _g-I’n - (-* gl'm
+ [; m_ ][R = = (—) m=l - E ]
mn
where
An=[AlEl+§ Z —mE&)—][AE +§m= mﬂa amzlLL—L(iL

Using equations (B68) to eliminate the cr'1 and c¢" in equations (B63) and
(B64), one obtains the follow1ng system Bf similtaneous equations
involving only the él;l and gm as unknowns:

M- -
1] - " 1" 1 = - [
pé]_ [gi) (wMNmp 8m]p m) * g (WMNmp mp YNm) ] UmMN
(B70)
1\24-' [—1 (W" +5 " ) " ( - un)] = - U"
p=1 gp MNmp mp ~Nm g MNmp mp Nm mMN

(m=1, 2, couy M)



where

ST gl B
mMN m a ‘a n=l E PN
m n
n
Ull - RHH + g (m_ﬂ: 2 lg (-l)
mMN m a 'a n=l & A
mn n

- tr t 1 13 - m ] ! H 1
I = Xy B + O By - (-2) [XMn By Y By ]

30

M 2
Xy - AE +2 {pr/a)®
171  a p=l Epn
M 2
X&n “AE + 2 & {pn/a)®
272 a p=l E
n
N 2
X'I(I”=AE +§ ZM
m 373 b n=1 Emn
e _ 2 N (an/p)Z
XNm B AHELP + b n= Emn

s
|
\V]
=
l—~
ke
2
= o
~—
M
1
[
"
L}

Mn a p=1l on
vz g 5 (nﬂ[b)zg'l)n
Im b n=1 E

mn

mn
_ _l#'_ (IIlT[) g -l)n nmw b)2 v
ab ‘a n=1 B E_ A Mmnp

(B71)

(B72)

(B73)

(BTH)

(B75)



_ mEp 8 M 1 (92 '
Vanp A2E2 + A El( -1) a qél Eqn(a ) 6mpq (876)

1 for m and p both
1 + +m m+ even odd
5mpq N [1 - (-1 - ()T« (-1)7F)= 1 for é ghd p both (B77)
odd, g even
O otherwise

The advantage of this preceding step is evident: Whereas the original
system, equations (B6l) to (B64), requires the solution of 2N + 2M simul-
taneous equations, the reduced system, equations (B70), contains only 2M
simultaneous equations. Thus N may be taken arbitrarily large without
increasing the number of simultaneous equations that have to be solved.

Special case: symmetry about y = b/2. - If the structure, loading,
and thermal strains are symmetrical about the line y = b/2, then a corre-
sponding symmetry obtains in the stress function F and in the plate and
stiffener stresses. Consequently one may set

el =c¢l'=0 for n even
n n
(B78)
é; = E; for all m
In place of equations (B61l) to (B64) the following system results:
- 2 M (mn{a)g - 2 M (mn{a)g(-lzm
' = - z
°n [AE) + 2 02 E °n [z nh1 B ]
mn
L nn2 M
—_ nt o X (4n ' '
=R -5 ('b) nZ1 G%m/Emn) (362")
(n:l, 5, eeey N)
- [2 M mn{a)zf-l) ] + C" [A _2_ I\é my/a 2]
~ % ta m—l m=l E
‘mn
= L onw, 2 M m
= L — — -l E ot
R+ () (1) (gr/E ) (62")
(h = 1,3, «os, N)
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5 v 5 =123,

-, i N (an/p)=
g, [ABE R ]

¢t - (-1)" e
2 2 N °n ( n BS
— ny _ S (L !
= Ry a (a.) n=l§3,.. E (B63")
mn
(m = 1,2,000, M)
where N is now restricted to odd integers.
Correspondingly, in place of equations (B70) the following system is
obtained.
I\Z/I 'g'i (gwt + 5 ™ -5 m) =« U (3701)
p=l “p MNmp mp ~Nm mp Nm mMN ‘

(m = l,2,nno, M)

where the primed symbols are defined as before through equations (B7l),
(B74) and (B75), but with the understanding that wherever a summation
with respect to n appears in these definitions n shall now take on only
odd values. The number of equations in the system (B70') 1s M, regard-
less of the value selected for N.

Special case: symmetry about y = b[?rand x = a/2. - A further
reduction in the number of simultaneous equation results if the structure,
loading, and thermal strains are symmetrical about both centerlines,

y = b/2 and x = a/2. In this case

cﬁ =c' =0 for n even

g'! = g; =0 for m even

m

(B79)
E; = E; for n odd
E;n = é;l for m odd

Equations (B61') to (B63') are replaced by
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[A & u LL.L]

1 l a m—lZS,..

G

(n=1,3,400, N)

o=

g, [A3E5 +

X M — "t L mx 2 N ' "
n=l§‘§,.. Emn ] = Rm - a (_a—) n=l§5,.. (En/Emn) (B65 )

(m=l,5,.o., M)

where M and N are now restricted to odd integers.

Eliminating the E' in equation (B63") by means of equations (B61")

gives the following system of simultaneocus equations in the g alone,
which takes the place of equations (B70"):

1’11(

- R T IETR

- {»Rr;l” ) % (1;_;1)2 n=11§3;.. R, (Emn%)'l} (B70")
(m=1,3,.0., M)

where

WI-JZ‘

M {mﬂ{a)z
m=133, .

(B73")

Snn(b}g

[ -
m A5E5 * n= 123,..

Regardless of how large a value is assigned to N, there are only (M+l)/2
simultaneous equations in the system (B70"). -..
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Limiting case of large stiffener areas. - The case in which the
stiffener cross-sectional areas are large compared to the plate cross-
sectional area is of practical and theoretical interest. TIn order to
study this case, let it be assumed that AlEl’ A2E2, A3E3 and AhEh all

approach infinity while maintaining constant ratios with each other.
Then equations (B61l) to (BA4) degenerate to

Er'l = Rr'l/ (AlEl) Eﬁ = Rr';/ (A_EEE)
g, = R"'/(A,E,) g = (R"/(8)F,)

Thus for this limiting case it is unnecessary to solve simultaneous
equations.

Equations (B80) represent a first-order perturbation solution of
equations (B61l) to (B64), in which the coefficients of Rﬁ/(AlEl)’

" . . 3 ~1
Rn/(AeEe), etc. are expanded in series of powers of (a EllAlEl) and

only the zeroth power retained. If terms of the zeroth and first degree
are retained, the following more accurate results are arrived at:
1"

2 . Ry, 2 M gnga)2§-12m

R' M
= __n _2 m/a = Z
W "RE |1 "an E AE Afy, amsl B AE)
1% mn A7
e 11213
M
2 @m® §o_ 1 _ (B +2 @ ()" L (R
v &) nb E_AE LETH D mE1 F AR AE,
1 1
o= R 2 % (mr /2 ) 2(-1)™ . R 1.2 % (mr/a)®
n AlEl a m=1 Emn A2E2 A2E2 a m=1l Emn A2E2
" nn
p2an® ¥ CR a2 angm ¥ (LR w
5 %) o3 Fom APy BB, B D mel E_AE, AE,
mne un n
ey ] K sy
n = KE Dol B AE | TAE, bafl B A
N Rl 2 "
2 (mr\2 1 oy + = (B (-)™ 1 n
-= &) ¥ ( Zq ( )
a ‘g n=1 E ABE3 AlE a 'a n Emn A3E3 A2E2

(B80)

(B82)



11! 1mi
R 2 N !nn{b)eg-lln R 2 (n/b)2
2 2 s 2|12 3

g = =

m A3E3 n=1 Emn AMEM AhEh b n=1 E Ah )
2 w2 ¥ _ (-0 Fa - N <1)n R
2 @n” % & )-—()2<1> =z n

(BBL)

It is seen that a solution to this degree of approximation still retains
the simplicity of equations (B80), in the sense that it is unnecessary to
solve simultaneous equations to determine the Eé, E;, éﬁ and E&. The coef-

ficients of R'/(A ), etc. in eqpations (B81) to (B84) are correct to terms

of the first degree in (aaE . To obtain expressions of greater
accuracy it would once againlbe necessary to solve simultaneous equations.
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APPENDIX C
ANATYSIS FOR THE CASE OF CONSTANT-STRESS

(OR PRESCRIBED-STRESS) STIFFENERS

If the stiffener cross sections are wvaried so as to produce in each
stiffener a constant (or non-constant but prescribed) stress everywhere
along its length, then the determination of the plate stresses becomes
extremely simple, for in that case the normal stress in the adjacent plate
in a dlrectlon parallel to the stiffener is essentially given, and conse-
quently the c!, c, gy g" in equations (B22), (B23), (B25), and (B26) are
known. (Thls is n cOntrast to the constant-area case, in which the c etc.
were unknown.) With these quantities known, equations (B60), (BS8), (B56),
and then (B21), (B24), and (B27) will furnish the remaining plate stresses.

To carry out the foregoing analysis in detail, let Ul(y), ce(y), cg(x),

ch(x) denote the prescribed, perhaps constant, values of the stresses (Pi/Ai)

in the stiffeners at x = 0, x = a, y = 0, and y = b respectively. Then the
strains in these stiffeners are known from equations (1). Equating these to
the corresponding plate strains adjacent to the stiffener, equations (2),gives

1]

ey + (0y/E))

e (0,5) + CN (0,¥) - €N, (¥)

ey + (0,/Ey)

e (a,y) + CoN (a,y) - CN,(¥)

(c1)
ey + (UB/E5) = ex(x,O) + Cle(x,O) - CBNB(X)
eu + (UA/EA) = ex(x,b) + Cle(X’b) - C5Nu(x)
whence
_O%F 1 : o o1 (¥)
N (0,¥) = (g; o G ley(y) - e (0,y) + Bt e S, ()] (c2)
etc.

Substituting the known right-hand sides of cquations (C2) into equations
(B33), (B34), (B36), and (B357), and carrying out the integrations, one
obtains the values of the Cﬁ’ cg, gi, and g;, from which the plate stresses

can be found as indicated in the previous paragraph.
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In order to determine the variations of stiffener cross-sectional area
required to produce the prescribed stiffener stresses, the relationships

A (y) = P (y)/oy () A(y) = By(y)/oy(y)
(c3)
Ay (%) = P (x)/o () 8, () = B,(x)/o, (x)
may be used, with P.(y) etc. evaluated by integrating the running loads
on the stiffeners, Starting at one end, as shown below.
y y
P, (y) = P (0) + f a, (v*) ay’ -f N, (0,¥) ay
0 - 0
y y
- ?,(0) + oy + [EE) s
=9 q‘l y Y %oy 0 y
0 0 B
y ¥y
M y 0
= Pl(o) + f Cll(Y') dy' + f méo ng‘o jmn cos —.Tbg‘ d.y
0 0]
y
M N oy -
=P (0) + f GO W+ Ty i * D o d SRR
0]
(ck)
Similarly
v ]
P.(y) = 2.(0) - (') dy' - B (1) ™(yi . + > 25 sin BZE)  (c3)
2V 2 W\ v m=0 ¥Imo ¥ nZ1 ox Ym b ’
0
X
N 5 Moa . X
P5(X) = P5(O) + f qB(X') dx' + %, (XJOn + B o g Sin T) (c6)
0
bd
N Nne . Mo a . mnx
P, (x) = B, (0) - f q (x') ax' - 5o (1) (xdy, + 2 o 3 sin =) (CT)
0
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